
SERVOSILA SC-25 Brushless Motor Controllers

Programming Guide

Revision C

www.servosila.com/ en/ mot ion -control

1 www.servosila.com

http://www.servosila.com/
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control

Table of Contents

Introduction..4

Network Architecture...6

CAN Network...6

USB-to-CAN Gateway + CAN Network..6

Unique Node ID..7

Application Programming Interfaces...8

Linux APIs..8

Windows APIs...9

Message Flows...10

Sending COMMANDS to devices..10

Receiving TELEMETRY from devices...11

Fault Acknowledgment...12

Reading a Telemetry or a Configuration Parameter..12

Encoding and Decoding...14

General message structure...14

Encoding COMMANDS...15

Decoding TELEMETRY...16

CAN ID Analysis & Decoding Example (C++)..16

Encoding a READ REQUEST..17

Decoding a READ RESPONSE..18

Data Types...19

FLOAT16..19

List of applicable COB IDs...20

SLCAN Text Protocol..21

Format of an SLCAN text message..21
2 www.servosila.com

http://www.servosila.com/

Serial Port Settings..21

Starting SLCANd daemon under Linux..22

Sample Projects (C++)...23

3 www.servosila.com

http://www.servosila.com/

Introduction
Servosila SC-25 Brushless Motor Controllers provide an a CANopen control interface, and an
open USB 2.0 interface, a virtual COM port, for receiving commands from a control
computer/PLC as well as for sending telemetry back.

No proprietary drivers or SDKs are needed to connect the Servosila controllers to a Linux or a
Windows 10/8 computer. Both Windows 10/8 and Linux come with prepackaged drivers and
programming APIs sufficient to interface to Servosila controllers; this includes the popular Linux
distributions of Debian and Ubuntu. Drivers for Windows 7 are available on request.

The controllers feature a built-in USB-to-CAN routing function, a “built-in USB2CAN
adapter/dongle”, that enables PCs/PLCs to access an entire CAN network through connection to
a single Servosila controller via its USB port. In other words, by connecting to a USB port of a
single Servosila controller, a control computer/PLC gains access to the entire CANbus network
to which the Servosila controller is connected to. Up to 16 controllers chained via their CANbus
ports can be controlled by the same PC/PLC using the built-in USB-to-CANbus routing function.
The limit is mainly due to throughput of a USB port of the SERVOSILA controller that acts as a
USB2CAN dongle in addition to driving a motor; otherwise, all devices on a CANbus network
are equally accessible to a control computer/PLC via a connection to a single Servosila
controller. This includes non-Servosila devices such as GPS receivers or IMUs.

Up to 126 Servosila controllers can be connected to the same CANbus instance if a control
computer/PLC has a hardware CANbus interface or a dedicated USB2CAN adapter. Linux
SocketCAN API can be used to develop software that sends commands to Servosila controllers
or receives telemetry back from the controllers.

Whenever a USB 2.0 interface (vs. a CANbus interface) is used to connect Servosila controllers
to a Linux or a Windows 10/8 computer, the controllers appear as Virtual COM ports to both
operating systems. A semi-standard text protocol called SLCAN is then used to send commands
to the controllers through the virtual COM port as well as for receiving telemetry back.

In addition, most Linux distributions come with a special SLCANd daemon which makes
Servosila controllers attached via USB Virtual COM ports appear as CANbus devices or as
USB2CAN dongles. This daemon makes it possible to use the same Linux SocketCAN API
whenever the Servosila controllers are connected to Linux via USB 2.0 or a CANbus interface
(does not matter which one, the API is still SocketCAN API).

As Windows 10/8 systems do not have such a unified CANbus API, the ways for a control
system’s software running on Windows to interact with Servosila controllers include:

• either through a virtual COM-port (USB 2.0) by writing to and reading from the port
using a standard text protocol called SLCAN which is based on exchange of text strings
formatted according to fairly simple open specification,

• or using a third-party USB2CAN adapter/dongle, and whatever programming API the
adapter/dongle provides for Windows.

4 www.servosila.com

http://www.servosila.com/

In general, user software for a control computer/PLC can be developed in any language that
supports either Linux SocketCAN API or read/write operations for virtual COM ports on
Windows 10/8 or Linux. This includes C/C++, Qt, Java, Python, MATLAB, LabView, and many
other languages and packages.

The brushless motor controllers come with a graphical software tool called “Servoscope”. The
tool provides means of configuring the controllers, displaying real-time telemetry coming via
CANbus or USB, and sending commands down to the controllers.

The tool allows visualizing the telemetry data by plotting graphical charts. This is helpful when
tracking down transient issues with electric drives.

The application runs on Windows 10/8 or Linux including the popular distributions of Debian
and Linux. No drivers need to be installed on either of the platforms to run the tool. The tool
connects to Servosila controllers via CANbus or USB interfaces.

The Servoscope application comes with a built-in software simulator of electric drives. In a real
time way, the simulator numerically solves differential equations that define the dynamics of
brushless motors, and provides a simulated CANbus/CANopen interface via Linux SocketCAN
API for user control software being tested to connect to. The interface of the software simulator
exactly matches the interface of a real Servosila controller coupled with a real electric drive.

The simulator allows debugging of user software via CANbus/CANopen protocol prior to
procuring a real hardware. Even if the hardware is available, it is still wise to first test your code
against a simulator to avoid risking to burn a motor, break a gearbox, or cause an injury.

The simulator allows modeling the behavior of brushless motors or control systems under
various conditions including dangerous or critical ones. The simulator is one of the software
tools packaged into Servoscope application.

5 www.servosila.com

http://www.servosila.com/

Network Architecture

CAN Network
Servosila SC25 Brushless Motor Controllers are designed to connect to a control computer (PLC
or Autopilot) via a CAN bus network. The control computer needs to have a physical CAN bus
interface or some sort of an interface adapter to connect to the controllers this way.

Up to 126 Servosila brushless motor controllers can be connected to the same CAN bus instance
if a control computer/PLC has a hardware CANbus interface. Linux SocketCAN API can be used
to develop software that sends commands to Servosila controllers or receives telemetry back
from the controllers.

USB-to-CAN Gateway + CAN Network
The other option is to use one of the Servosila SC25 Brushless Motor Controllers as a USB-to-
CAN gateway (adapter). In such a network architecture, the control computer uses its USB 2.0
interface to connect to one of the brushless motor controllers acting as a “USB2CAN adapter”,
while the controllers themselves interconnect via a CAN network.

In this network architecture, it is allowed to connect third-party CAN devices to the network of
brushless motor controllers. In such a case, the control computer communicates to the third-party
devices via the USB-to-CAN gateway function in the same way as it communicates to the
brushless motor controllers themselves.

6 www.servosila.com

Control Computer /
PLC

Brushless Motor
Controller 1

(USB-to-CAN gateway
enabled)

CAN

Brushless Motor
Controller 2

Brushless Motor
Controller N...

USB2.0

Control Computer /
PLC

Brushless Motor
Controller 1

CAN

Brushless Motor
Controller 2

Brushless Motor
Controller N...

http://www.servosila.com/

Up to 16 controllers chained via their CAN bus ports can be controlled by the same PC/PLC
using the built-in USB-to-CAN routing function. The limit is mainly due to throughput of a USB
port of the Servosila controller that acts as a USB2CAN dongle in addition to driving a motor.

Unique Node ID
Each brushless motor controller is assigned a unique Node ID, an integer between 1 and 126.
The Node IDs are used as an addressing scheme when sending messages to a particular device on
a CANbus network1, including when using the USB-to-CAN gateway function of the controllers.

Servosila SC-25 Brushless Motor Controllers come with factory-assigned sequential Node IDs.
Since there are just 125 of possible Node IDs, the factory-assigned Node IDs of your set of
controllers might not be unique. If that turns out to be the case, change the Node IDs of the
controllers using the “Servoscope” configuration tool. Make sure you check uniqueness of Node
IDs before connecting devices a CAN network.

1 Node IDs are defined by CANopen standard
7 www.servosila.com

http://www.servosila.com/

Application Programming Interfaces

Linux APIs

Linux SocketCAN API can be used to develop software that sends commands to SERVOSILA
controllers or receives telemetry back from the controllers.

If the path taken is to develop the control software from scratch, there are samples of open source
programs available from Servosila or can be found on the Internet that make use of Linux
SocketCAN API. Otherwise, many off-the-shelf software products such as LabView support
SocketCAN API out of the box, and come with an integrated CANopen stack.

Whenever a USB 2.0 interface (vs. a CANbus interface) is used to connect Servosila controllers
to a Linux control computer, the controllers appear as virtual serial ports. A text protocol called
SLCAN is then used to send commands to the controllers through the virtual COM port as well
as for receiving telemetry back.

8 www.servosila.com

Linux SocketCAN API

Servosila SC-25
Brushless Motor Controller

CAN bus hardware

Application

CAN bus cable

Linux Control Computer

Linux SocketCAN API

Servosila SC-25
Brushless Motor Controller

SLCANd (driver)

Application

Linux Control Computer

USB cable

C/C++ API C/C++API

/dev/ttyAC**

Servosila SC-25
Brushless Motor Controller

Application

Linux Control Computer

Text File API

USB cable

http://www.servosila.com/

Windows APIs

As Windows 10/8/7 systems do not have such a unified CANbus API, the ways for a control
system’s software running on Windows to interact with Servosila brushless motor controllers
include:

• either through a virtual COM-port (USB 2.0) by writing to and reading from the port
using a standard text protocol called SLCAN which is based on exchange of text strings
formatted according to fairly simple open specification,

• or using a third-party USB2CAN adapter/dongle, and whatever programming API the
adapter/dongle provides for Windows.

9 www.servosila.com

Third-party proprietary API

Servosila SC-25
Brushless Motor Controller

CAN bus hardware

Application

CAN bus cable

Windows Control Computer

Virtual Serial (COM) port

Servosila SC-25
Brushless Motor Controller

USB CDC driver

Application

Windows Control Computer

USB cable

APIText File API

http://www.servosila.com/

Message Flows

Sending COMMANDS to devices

The control computer is expected to continuously send commands2 to each of the Servosila SC25
Brushless Motor Controllers on the network. If such a continuous stream of commands suddenly
stops coming to a motor controller, the controller assumes that there is a network fault or a
failure in the parent control system. In such a case, the controller stops its motor as a safety
measure, and might enable a brake function depending on configuration settings.

How often the commands need to be sent depends on “heartbeat timeout” configuration
parameter of each of the controllers. The parameter is set using the “Servoscope” software. The
controller expects to receive at least one message from a control computer within the configured
time interval. Otherwise, the controller times out, and halts the motor as a safety measure.

Typically, a control computer would continuously send a “Servo” command with a target
position or an “Electronic Speed Control” command with a target speed, - or any other command
understood by the controller. If a target position or a target speed has not changed since the
previous time the command was sent, the control computer just re-transmits the previously sent
command with the same target value.

Note that CAN bus does not guarantee delivery of messages (frames), and the controllers do not
send back any acknowledgments confirming that a command has been received or executed. As
such, the control computer shall rely solely on the method of continuous streaming of commands
to ensure guaranteed delivery of the commands, assuming that most of the commands get
through to the controllers.

2 The commands are delivered as CANopen RPDO messages.
10 www.servosila.com

Control Computer / PLC Brushless Motor Controller

Continuous stream of
commands

command

command

command

...

The interval between
consecutive commands
should be less than the
controller’s heartbeat
timeout period, a
configurable parameter.
Otherwise, the controller
assumes that there is a
failure, and halts the motor
as a safety measure.

http://www.servosila.com/

Sending the commands too often might flood the network with unwanted messages, thus there is
a configuration parameter that controls the trade-off.

The flow of commands described in this section is applicable to both CAN and USB interfaces.

The format of the command messages is described later in this document. The format follows
CANopen standard (RPDO).

Receiving TELEMETRY from devices

Servosila SC25 Brushless Motor Controllers continuously (periodically) send telemetry
messages3 back to a parent control system. The interval between telemetry messages is
configured via the “Servoscope” software tool. The telemetry messages are sent asynchronously,
and are not synchronized to commands or requests coming from a control computer.

The control computer should detect situations when telemetry messages stop coming from a
particular device. This event typically indicates either a network fault or a failure of the device.
The control computer generally should detect and handle such abnormal situations.

Note that CAN bus network does not guarantee delivery of telemetry messages. A running motor
controller is not aware of whether or not the parent control system is actually receiving its
telemetry. The control computer is not required to acknowledge receiving the telemetry
messages.

The flow of telemetry messages described in this section is applicable to both CAN and USB
interfaces.

The format of the telemetry messages is defined later in this document. The format follows
CANopen standard (TPDO).

3 The telemetry data is delivered as CANopen TPDO messages.
11 www.servosila.com

Control Computer / PLC Brushless Motor Controller

Continuous stream of
telemetry messages

telemetry message

telemetry message

telemetry message

...

The control computer
detects failure of a
controller or a network
connectivity issue by using
the telemetry messages as
heartbeats.

http://www.servosila.com/

Fault Acknowledgment
Whenever an internal fault is detected by a Servosila SC25 Brushless Motor Controller (e.g. an
encoder error), the controller automatically powers off the motor as a safety measure, raises one
or more "Fault Bits" flags in telemetry, and starts waiting for a "Reset" command to come from a
parent control system. Until a "Reset" command comes, the controller ignores all other
commands received from the parent control system. All configuration management functions4

keep working as usual.

The parent control system is expected to continuously monitor the "Fault Bits" parameter
delivered to it via a telemetry message. If the "Fault Bits" parameter is 0 (all bits are clear), then
nothing needs to be done in response to such a telemetry message.

However, if one or more bits of the "Fault Bits" parameter indicate a fault, the parent control
system is expected to send a "Reset" command back to the controller since the controller does
not know on its own how to react to such a failure. The "Reset" command needs to be sent once
the issue is rectified, or the control system decides that the fault can be safely ignored, and the
electric drive is ready to re-start operation, may be in a different mode of operation.

Until the controller receives such a “Reset” command, it will keep the electric motor de-
energized as a safety measure.

The fault acknowledgment flow described in this section is applicable to both CAN and USB
interfaces.

Reading a Telemetry or a Configuration Parameter
The control computer has a way to read out5 an arbitrary telemetry or configuration parameter
stored in the device. To do this, the control computer sends a message with a request to a device.
Upon receiving such a request, the device immediately replies back with a message that carries
the most up-to-date value of the requested parameter.

4 CANopen SDO functions

5 CANopen SDO protocol
12 www.servosila.com

http://www.servosila.com/

To identify a parameter of interest, the control computer uses an [Index:Sub-Index] pair of
numbers. A list of all parameters, their indices, sub-indices and data types is given in a Servosila
Device Reference document.

If the device does not find the requested parameter (e.g. an invalid index or sub-index), the
device replies with an error message.

The formats of the request and response messages are defined later in this document. The
formats follow CANopen SDO standard.

13 www.servosila.com

Control Computer / PLC Brushless Motor Controller

Read Request (index, subindex)

Read Response (index, subindex, value)

http://www.servosila.com/

Encoding and Decoding

General message structure

All types of messages consist of just two components, a CAN ID and a binary Payload.

• CAN ID is an addressing mechanism in a CAN bus network. CAN ID is defined as a sum
of Node ID and a COB ID. To create a CAN ID, just take your Servosila device’s unique
Node ID and add a COB ID listed in Servosila Device Reference document for the given
type of message.

• Node ID is a unique identifier assigned to every Servosila SC-25 Brushless Motor
Controller, or to any other device in a CANopen network. The identifier assigned to a
Servosila controller can be changed using the “Servoscope” software tool.

• COB ID is an integer number that defines what kind of message this is (a command,
telemetry, or a configuration management message). The COB IDs are given in Servosila
Device Reference document for each command or telemetry message, and are
standardized by CANopen. There are just 8 possible COB IDs predefined in CANopen
standard for commands and telemetry messages, and a few more COB IDs are defined for
configuration management or network management.

• Payload is always an 8 byte array (binary). The contents of the payload depend on the
kind of message being sent or received.

Supported APIs accept those two components (CAN ID and Payload) one way or another when
sending or receiving messages (see sample C++ projects). Linux cansend command uses a ‘#’
symbol to separate CAN ID and Payload components in a command line API call. The payload is
encoded as a string of hexadecimal symbols, two hex symbols per each byte of Payload:

14 www.servosila.com

Node ID + COB ID

Payload (8 bytes, binary)CAN ID (11 bits)

0 1 2 3 4 5 6 7

Example CAN ID computation:
if Node ID is 5, and COB ID is 0x200,

then CAN ID is 0x205

http://www.servosila.com/

Encoding COMMANDS

See sample C++ projects slcan-esc-command and canbus-esc-command for details on
how to encode and send out a command to a Servosila SC-25 Brushless Motor Controller.

Hint: press a “View” button in command section of the “Servoscope” software to view properly
rendered commands.

15 www.servosila.com

Node ID + COB ID

Payload (8 bytes, binary)CAN ID (11 bits)

0 1 2 3 4 5 6 7

Command Code
The very first byte in Payload of a command carries a Command Code.

All Command Codes are given in Servosila Device Reference document.
For example, 0x20 means “Electronic Speed Control”.

COB ID
The parameter is listed in Servosila Device Reference document for each command.

For example, COB ID to be used with “Electronic Speed Control” command is 0x200.

Node ID (destination device)
The parameter is a unique identifier assigned to each controller.
This parameter tells which controller the command is directed to.

The ID of a particular device can be changed using
the “Servoscope” software tool.

Command-specific payload section
Most commands have parameters. Those parameters are encoded

in this section. Position of each parameter and parameter’s data type
are listed in Servosila Device Reference document.

 For example, “Electronic Speed Control” command has
a single parameter called “Speed” of FLOAT32 type,

encoded starting from byte 4 of the Payload.

http://www.servosila.com/

Decoding TELEMETRY

See sample C++ projects slcan-telemetry and canbus-telemetry for an example of
how to receive and decode a telemetry message coming from a Servosila SC-25 Brushless Motor
Controllers.

CAN ID Analysis & Decoding Example (C++)

//Extract Node ID from CAN ID
uint32_t extract_node_id_from_can_id(uint32_t can_id)
{
 //assert(can_id<=2047); //11bit only
 const uint32_t node_id = can_id & 127; //0000-1111111
 return node_id;
}

//Extract COB ID from CAN ID
uint32_t extract_cob_id_from_can_id(uint32_t can_id)
{
 //assert(can_id<=2047); //11bit only
 const uint32_t cob_id = can_id & 0x780; //1111-0000000
 return cob_id;
}

16 www.servosila.com

Node ID + COB ID

Payload (8 bytes, binary)CAN ID (11 bits)

0 1 2 3 4 5 6 7

Node ID (source device)
The parameter is a unique identifier assigned to each controller.

This parameter tells what controller the telemetry message comes from

Telemetry payload section
Each of telemetry messages carries parameters (data) in the Payload array.

The parameters of each of the telemetry messages, their data types and
positions in the Payload are listed in Servosila Device Reference document.

COB ID
There are just 4 telemetry COB IDs: 0x180, 0x280, 0x380, 0x480.

COB ID of a telemetry message tells how to decode it.
For each of the COB IDs there is a Payload format definition

in Servosila Device Reference document.

http://www.servosila.com/

Encoding a READ REQUEST

Notes:

• Payload bytes 4-7 are not used in this message. The bytes are usually set to all zeros.

• The Index is encoded in the “little-endian format” (UINT16).

• Command Code = 0x20 means “write request”. This code can be used to
programmatically change configuration parameters. The payload bytes 4-7 are then used
to deliver a new value to be written into a configuration parameter. The type of the value
must match a data type specified in Servosila Device Reference for the configuration
parameter that needs to be programmatically updated.

17 www.servosila.com

Node ID + COB ID

Payload (8 bytes, binary)CAN ID (11 bits)

0 1 2 3 4 5 6 7

Node ID (destination device)
The parameter is a unique identifier assigned to each controller.
This parameter tells which controller the command is directed to.

The ID of a particular device can be changed using
the “Servoscope” software tool.

COB ID = 0x600 (“read request”)

Command Code = 0x40 (“read, unknown size”)

Index
Each telemetry or configuration parameter has an Index defined

in Servosila Device Reference document for that particular parameter.
For example, a telemetry parameter “Torque” has index = 0x4001

Sub-Index
Each telemetry or configuration parameter has a Sub-Index defined

in Servosila Device Reference document for that particular parameter.
For example, a telemetry parameter “Torque” has sub-index = 0x02

http://www.servosila.com/

Decoding a READ RESPONSE

Notes:

• Command Code = 0x80 means an error response, typically, caused by an invalid index or
sub-index in a read request.

• The Index is encoded in the “little-endian format” (UINT16).

18 www.servosila.com

Node ID + COB ID

Payload (8 bytes, binary)CAN ID (11 bits)

0 1 2 3 4 5 6 7

Node ID (source device)
The parameter is a unique identifier assigned to each controller.
This parameter tells which controller the command is directed to.

The ID of a particular device can be changed using
the “Servoscope” software tool.

COB ID = 0x580 (“read response”)

Command Code
The code indicates the size of the Value in bytes:

0x43 means “4 bytes”, 0x47 means “3 bytes”, 0x4B means “2 bytes”,
0x4F means “1 byte”, 0x40 means “unknown”, 0x80 means “error”.

Index
Each telemetry or configuration parameter has an Index defined

in Servosila Device Reference document for that particular parameter.
For example, a telemetry parameter “Torque” has index = 0x4001

Sub-Index
Each telemetry or configuration parameter has a Sub-Index defined

in Servosila Device Reference document for that particular parameter.
For example, a telemetry parameter “Torque” has sub-index = 0x02

Value
A data type of the value is defined in

Servosila Device Reference document.

http://www.servosila.com/

Data Types
Data Type Size in bytes Comments

BOOL 1 Same as UINT8.

UINT8 1 Byte.

INT8 1 Signed byte.

UINT16 2 Little-endian format.

INT16 2 Little-endian format.

UINT32 4 Little-endian format.

INT32 4 Little-endian format.

FLOAT32 4 IEEE 32-bit floating point value. Little-endian format.

FLOAT16 2 This is a proprietary floating number format defined by Servosila. See a description below.

FLOAT16
The FLOAT16 type is transmitted the same way as INT16, a signed integer. However, upon
receiving, the signed integer value needs to be linearly scaled to range [-128, +128] to extract an
encoded floating point value. This is a special data type that allows to fit this particular range of
floating point numbers into 2 bytes instead of 4 bytes. This is just a data compression technique
that allows to transmit more data in the limited 8byte-long CAN payload.

A C++ example of decoding or encoding a FLOAT16 number:

#define MAX_FLOAT16 (128.0f)
#define MIN_FLOAT16 (-MAX_FLOAT16)

float decode_float16 (int16_t bits)
{
 //de-scaling
 const float f32 = float(bits) * (MAX_FLOAT16 / 32767.0f); //LINEAR SCALING FORMULA
 return f32;
}

int16_t encode_float16 (float f32)
{
 //clipping the value
 if(f32 > MAX_FLOAT16) f32 = MAX_FLOAT16;
 if(f32 < MIN_FLOAT16) f32 = MIN_FLOAT16;
 //scaling
 const int16_t bits = lroundf(f32 * (32767.0f / MAX_FLOAT16)); //LINEAR SCALING FORMULA
 return bits;
}

19 www.servosila.com

http://www.servosila.com/

List of applicable COB IDs
COB ID (hex) Used to transmit Direction

0x200 commands Control Computer → Device

0x300 commands Control Computer → Device

0x400 commands Control Computer → Device

0x500 commands Control Computer → Device

0x180 telemetry Device → Control Computer

0x280 telemetry Device → Control Computer

0x380 telemetry Device → Control Computer

0x480 telemetry Device → Control Computer

0x580 read responses Device → Control Computer

0x600 read requests Control Computer → Device

20 www.servosila.com

http://www.servosila.com/

SLCAN Text Protocol

Format of an SLCAN text message

Serial Port Settings
Since the USB serial port is a virtual one, it does not matter what serial port settings are used.

If in doubt, use the following settings:

Baud rate: 115200, Data bits: 8, Stop bits: 1, Parity: None, Flow control: None.

21 www.servosila.com

t2058200000000000C842[CR]

Node ID + COB ID

Payload (8 bytes, binary)CAN ID (11 bits)

0 1 2 3 4 5 6 7

Every SLCAN message ends with
a carriage return (CR) symbol (ASCII 0xD).

The Payload is encoded as a string of 16 hexadecimal symbols (ASCII).
Every byte of the original binary 8bytes payload is represented by 2 symbols.

So, there are 8*2 hexadecimal symbols in the payload sub-string.

Number of bytes in the original payload.
Encoded as a single ASCII character.

Always 8.

CAN ID encoded in hexadecimal ASCII format.

Every SLCAN message starts with either symbol ‘t’ or ‘T’ (ASCII).
Low-case ‘t’ means 11bit CAN ID identifiers.
Capital ‘T’ means a 29bit CAN ID identifiers.

Servosila SC-25 Brushless Motor Controllers use 11bit identifiers only.
However, the USB-to-CAN function of the controllers can use 29bit identifiers

when routing messages from third-party devices.

http://www.servosila.com/

Starting SLCANd daemon under Linux
Linux’s pre-packaged SLCANd daemon allows using Linux SocketCAN API with USB interface
of Servosila SC-25 Brushless Motor Controllers. Otherwise, the daemon is not required.

Use the following commands to start SLCANd daemon under Linux:

root@debian# slcand /dev/ttyACM0 can0

root@debian# ip link set up can0

22 www.servosila.com

http://www.servosila.com/
mailto:root@debian
mailto:root@debian

Sample Projects (C++)
Project Name OS Interface Language Type of

application
Dependencies Description

canbus-esc-command Linux CAN C++ command
line

none The sample shows how to send an Electronic
Speed Control command via CAN bus (Linux
SocketCAN API).

canbus-telemetry Linux CAN C++ command
line

none The sample demonstrates how to receive and
decode telemetry messages coming via CAN
bus.

slcan-esc-command Linux USB C++ command
line

none The sample shows how to send an Electronic
Speed Control command via USB (virtual serial
port) using SLCAN text protocol.

slcan-telemetry Linux USB C++ command
line

none The sample demonstrates how to receive and
decode telemetry messages coming via USB
(virtual serial port) using SLCAN text protocol.

MotorControlGUI Windows
, Linux

USB C++ GUI Qt library The sample is an end-to-end demonstration of a
graphical user interface (GUI) for controlling an
electrical drive. The sample displays telemetry
coming from the controller and periodically
sends commands to the controller.

The sample projects come with reusable helper C++ functions and classes that help encode or
decode CAN, SLCAN and CANopen messages. Use a C++ compiler (GCC, MinGW, Visual
Studio) and an IDE (Qt Creator, Code Blocks, Visual Studio) to compile and launch the samples.

23 www.servosila.com

http://www.servosila.com/

Figure 1: Screenshot of MotorControlGUI, an example project written in C++ with Qt library. The
sample program runs on both Windows and Linux. The source code of the application is freely
available for modification, reuse or distribution.

24 www.servosila.com

http://www.servosila.com/

Servo drives designed around SERVOSILA SC-25C
brushless motor controllers

YouTube: http://www.youtube.com/user/servosila

www.servosila.com/ en/mot ion -control

25 www.servosila.com

http://www.youtube.com/user/servosila
http://www.servosila.com/
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control
http://www.servosila.com/en/motion-control

	Introduction
	Network Architecture
	CAN Network
	USB-to-CAN Gateway + CAN Network
	Unique Node ID

	Application Programming Interfaces
	Linux APIs
	Windows APIs

	Message Flows
	Sending COMMANDS to devices
	Receiving TELEMETRY from devices
	Fault Acknowledgment
	Reading a Telemetry or a Configuration Parameter

	Encoding and Decoding
	General message structure
	Encoding COMMANDS
	Decoding TELEMETRY
	CAN ID Analysis & Decoding Example (C++)
	Encoding a READ REQUEST
	Decoding a READ RESPONSE
	Data Types
	FLOAT16
	List of applicable COB IDs

	SLCAN Text Protocol
	Format of an SLCAN text message
	Serial Port Settings
	Starting SLCANd daemon under Linux

	Sample Projects (C++)

